Contents (Sommaire) Combining Approaches to Improve Bounds on Convex Quadratic MINLP Problems

نویسنده

  • M. Guignard
چکیده

Bounds on the optimal value of a convex 0-1 quadratic programming problem with linear constraints can be improved by a preprocessing step that adds to the quadratic objective function terms which are equal to 0 for all 0-1 feasible solutions yet increase its continuous minimum. The continuous and the CHR bounds are improved if one first uses Plateau’s QCR method (2005), or one of its predecessors, the eigenvalue method of Hammer and Rubin (1970) and the method of Billionnet and Elloumi (2007). We present some preliminary results for convex GQAP problems using the eigenvalue method of Hammer and Rubin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Approaches to Improve Bounds on Convex Quadratic MINLP Problems1

Bounds on the optimal value of a convex 0-1 quadratic programming problem with linear constraints can be improved by a preprocessing step that adds to the quadratic objective function terms which are equal to 0 for all 0-1 feasible solutions yet increase its continuous minimum. The continuous and the CHR bounds are improved if one first uses Plateau’s QCR method (2005), or one of its predecesso...

متن کامل

Improved quadratic cuts for convex mixed-integer nonlinear programs

This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...

متن کامل

Branching and bounds tighteningtechniques for non-convex MINLP

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP) models and can be solved by spatial Branch&Bound (sBB) techniques. We study the impact of two important parts of sBB methods: bounds tightening and branching strategies. We extend a branching technique originally developed for MILP, reliability branching, to the MINLP case. Motivated by the de...

متن کامل

Combining QCR and CHR for convex quadratic pure 0-1 programming problems with linear constraints

The convex hull relaxation (CHR) method (Albornoz 1998, Ahlatçıoğlu 2007, Ahlatçıoğlu and Guignard 2010) provides lower bounds and feasible solutions on convex 0-1 nonlinear programming problems with linear constraints. In the quadratic case, these bounds may often be improved by a preprocessing step that adds to the quadratic objective function terms that are equal to 0 for all 0-1 feasible so...

متن کامل

MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL

In the context of a variation of the standard UFL (Uncapacitated Facility Location) problem, but with an objective function that is a separable convex quadratic function of the transportation costs, we present some techniques for improving relaxations of MINLP formulations. We use a disaggregation principal and a strategy of developing model-specific valid inequalities (some nonlinear), which e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014